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On Local Linear Convergence Rate of Iterative
Hard Thresholding for Matrix Completion
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Abstract—Iterative hard thresholding (IHT) has gained in
popularity over the past decades for large-scale optimization.
However, the convergence properties of this method have only
been explored recently in non-convex settings. Existing works
in matrix completion provide global convergence guarantees for
IHT. To do so, they rely on standard assumptions such as
incoherence property and uniform sampling. While such analysis
provides a global upper bound on the linear convergence rate, it
does not describe the actual performance of IHT in practice. In
this paper, we provide a novel insight into the local convergence
of IHT for matrix completion. We uncover the exact asymptotic
linear rate of IHT in closed-form and identify the region in
which the algorithm is guaranteed to converge. Furthermore,
we utilize random matrix theory to study the linear rate of
convergence of IHT for large-scale matrix completion. We find
that asymptotically, the rate can be expressed explicitly in terms
of the relative rank and the sampling rate. Finally, we present
numerical results to verify our theoretical analysis.

Index Terms—Matrix completion, iterative hard thresholding,
local convergence analysis, random matrix theory.

I. INTRODUCTION

MATRIX completion is a fundamental problem that
arises in many areas of signal processing and ma-

chine learning such as collaborative filtering [1]–[4], system
identification [5]–[7] and dimension reduction [8], [9]. The
problem can be explained as follows. Let M ∈ Rn1×n2 be the
underlying matrix with rank r and Ω be the set of locations
corresponding to the observed entries of M , i.e., (i, j) ∈ Ω if
Mij is observed. The goal is to recover the unknown entries
of M , belonging to the complement set Ω̄.

To understand the feasibility of matrix completion, let us
represent M using its singular value decomposition as

M =

r∑
i=1

σiuiv
>
i ,

where σi is the i-th largest singular value of M , ui and vi are
the corresponding left and right singular vectors. Since each
set of the left and right singular vectors are orthonormal, the
degrees of freedom (DoF) of matrix completion is given by

r +

r∑
i=1

(n1 − i) +

r∑
j=1

(n2 − j) = (n1 + n2 − r)r,
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which is significantly less than the total number of entries in
M when r is small. This implies the possibility of recovering
the entire matrix even when only a few entries are observed.
However, not every matrix with more than (n1 + n2 − r)r
observed entries can be completed. For instance, if an entire
column (or row) of a rank-one matrix is missing, then the
matrix cannot be recovered. Similarly, if a low-rank matrix
contains too many zero entries, then the observed entries might
end up being all zero, thereby not providing any clue about
the missing entries.

The aforementioned argument motivates two well-known
assumptions in matrix completion: the incoherence property
of the underlying matrix M and the uniform sampling model
for Ω [10]. Under these assumptions, there has been a long line
of work on provable methods for globally solving matrix com-
pletion. Based on the formulation of the optimization problem,
these methods fall into three major categories: linearly con-
strained nuclear norm minimization, low-rank factorization,
and rank-constrained least squares (see Table I). The first
approach, nuclear norm minimization, is a convex relaxation of
the original rank-constraint problem and can be solved using
proximal-type algorithms [11], [12], [29]. It is noted that such
algorithms often come with sublinear convergence guarantees
in the literature. The second approach, low-rank factorization,
stems from the Burer-Monteiro factorization [20], whereby the
low-rank matrix is viewed as a product of two low-rank com-
ponents. The resulting least-squares problem is unconstrained
albeit non-convex. Recent progress in this approach has shown
that basic optimization procedures, such as gradient descent
[19] and alternating minimization [16], converge linearly to
the global solution at a rate at most 0.5, under the assumption
that the number of known entries is sufficiently large. The third
approach, rank-constrained least squares, is also a non-convex
formulation of matrix completion. One of the most popular
algorithms for solving this optimization problem is iterative
hard thresholding (IHT) [22]. When converging to a low-rank
solution, it is stated in [22] that hard-thresholding algorithms
are more efficient than their soft-thresholding counterparts in
both computational complexity per iteration and convergence
speed. Interestingly, by assuming a sufficiently large number
of known entries, Ding and Chen [23] have shown that IHT
with a specific choice of step size converges linearly to the
global minimum at a rate at most 0.5.

While the aforementioned analyses for matrix completion
are powerful, they provide universal bounds on the conver-
gence rate that are conservative. These bounds are primarily
developed to prove the convergence to a global solution of
the problem but may not offer a precise estimate of the
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TABLE I: Three well-known formulations of the matrix completion problem.

Problem formulation Description Algorithms

Linearly constrained
nuclear norm minimization

min
X∈Rn1×n2

‖X‖∗ s.t. Xij = Mij , (i, j) ∈ Ω Semi-definite programming (SDP) [10], singular value thresh-
olding (SVT) [11], accelerated proximal gradient (APG) [12],
conditional gradient descent (CGD) [13]–[15]

Low-rank factorization min
Y ∈Rn1×r,Z∈Rn2×r

∑
(i,j)∈Ω

((Y Z>)ij −Mij)2 Alternating minimization (AM) [16], [17], gradient descent
(GD) [18], [19], projected gradient descent (PGD) [20], [21],
stochastic gradient descent (SGD) [18]

Rank-constrained least
squares

min
X∈Rn1×n2

∑
(i,j)∈Ω

(Xij−Mij)2 s.t. rank(X) ≤ r Singular value projection (SVP) [22], [23], normalized IHT
(NIHT) [24], conjugate gradient IHT (CGIHT) [25], iterative
hard-thresholded SVD (IHTSVD) [26], accelerated IHT [27],
[28]

optimization performance. Moreover, their fixed choice of
the sample complexity raises the question of how would the
convergence rate vary for arbitrary values of the number of
observations s. Intuitively, as the rank of the matrix remains
constant and the number of observed entries increases, one
can expect the algorithm converges at a faster linear rate.
Such dependence of the rate on the specifics of the problem
is missing from existing results in the literature. To address
this issue, our goal in this paper is to develop an exact
convergence rate analysis that enables a more precise estimate
of the optimization performance. We restrict our attention to
the iterative hard-thresholded singular value decomposition
(IHTSVD) algorithm for matrix completion. By exploiting the
local structure of the problem, we establish a tight closed-form
bound on the convergence rate and the number of iterations
required to achieve a given accuracy.

The contribution of this work is three-fold. First, we pro-
pose a novel analysis of the local convergence of IHTSVD
for matrix completion. The proposed analysis establishes the
region of convergence that is proportional to the least non-zero
singular value of the matrix M . It also provides a closed-form
bound on the linear convergence rate in terms of M and Ω.
Recognizing IHTSVD as a special case of IHT with a unit
step size, our analysis can also be extended to the general
case of IHT with a step size other than 1 (see Section III-C).
To the best of our knowledge, our proposed analysis is exact
and is the tightest possible bound on the convergence rate
of IHT. Second, using random matrix theory, we obtain a
simplified asymptotic expression for the exact linear rate of
IHTSVD in the large-scale regime. As the size of M grows to
infinity, we show that the linear rate of IHTSVD converges to
a deterministic constant that can be expressed in closed-form
in terms of the relative rank and the sampling rate. Finally,
we present numerical results to verify our proposed exact rate
of convergence as well as the asymptotic rate of IHTSVD in
large-scale settings.1

1Part of this work is leveraged on our conference paper [26]. In this
paper, we provide complete proof of all the results. Moreover, we present
a novel analysis of the asymptotic convergence rate in the large-scale matrix
completion setting and a comprehensive set of experiments to verify our
theoretical results. A similar result on the local linear convergence of IHTSVD
can be found in the unpublished work of Lai and Varghese [30]. However, we
emphasize that our initial result is published before the time [30] appeared
in arXiv. More importantly, our bound is tighter than that in [30] (see our
discussion in the Supplementary Material - Section A).

The rest of this paper is organized as follows. Section II
presents background and related work on the matrix com-
pletion problem and the IHTSVD algorithm. Next, our main
results on the convergence rate analysis of IHTSVD and
the asymptotic behavior of the rate in large-scale matrix
completion are given in Sections III and IV, respectively. Then,
Section V verifies the correctness of our analysis through
numerical simulations. Finally, we summarize our results and
discuss some of the possible extensions in Section VI.

II. PRELIMINARIES

A. Notation

Throughout the paper, we use the notations ‖·‖F , ‖·‖2, and
‖·‖2,∞ to denote the Frobenius norm, the spectral norm and
the l2/l∞ norm (i.e., the largest l2 norm of the rows) of a
matrix, respectively. Occasionally, ‖·‖2 is used on a vector to
denote the Euclidean norm. The notation [n] refers to the set
{1, 2, . . . , n}. Boldfaced symbols are reserved for vectors and
matrices. In addition, let In denote the n× n identity matrix.
We also use ⊗ to denote the Kronecker product between two
matrices.

For a matrix X ∈ Rn1×n2 , Xij refers to the (i, j) element
of X . We denote σmax(X) and σmin(X) as the largest
and smallest singular values of X , respectively, and denote
κ(X) = σmax(X)/σmin(X) as the condition number of X .
Similarly, λmax(X) and λmin(X) are used to denote the
maximum and minimum eigenvalues of X , respectively. The
notation vec(X) denotes the vectorization of X by stacking
its columns on top of one another. Let F (X) be a matrix-
valued function of X . Then, for some k > 0, we use
F (X) = O(‖X‖kF ) to imply

lim
δ→0

sup
‖X‖F =δ

‖F (X)‖F
‖X‖kF

<∞.

B. Background

Let us use M to denote the underlying n1×n2 real matrix
with rank

1 ≤ r ≤ m = min{n1, n2}. (1)

The sampling set Ω is a subset of the Cartesian product
[n1] × [n2], with cardinality s = |Ω| where 1 ≤ s < n1n2.
Furthermore, the orthogonal projection associated with Ω is
given in the following:
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Definition 1. The orthogonal projection onto the set of
matrices supported in Ω is defined as a linear operator
PΩ : Rn1×n2 → Rn1×n2 satisfying

[PΩ(X)]ij =

{
Xij if (i, j) ∈ Ω,

0 if (i, j) ∈ Ω̄,

where Ω̄ denotes the complement set of Ω.

If we consider vector spaces instead of matrix spaces, the
orthogonal projection PΩ can also be viewed as a selection
matrix corresponding to Ω:

Definition 2. The selection matrix SΩ ∈ Rn1n2×s comprises
a subset of s columns of the identity matrix of dimension n1n2

such that {
S>ΩSΩ = Is,

vec
(
PΩ(X)

)
= SΩS

>
Ω vec(X).

Corresponding to the complement set Ω̄, we also define
similar notations for PΩ̄ : Rn1×n2 → Rn1×n2 and SΩ̄ ∈
Rn1n2×(n1n2−s).

Next, using the notation of PΩ, we can formulate the matrix
completion problem as follows:

min
X∈Rn1×n2

1

2
‖PΩ(X −M)‖2F s.t. rank(X) ≤ r. (2)

One natural approach to the optimization problem (2) is
projected gradient descent (PGD). Starting at some X(0), we
iteratively update the current matrix by (i) taking a step in the
opposite direction of the gradient; and (ii) projecting the result
back onto the set of matrices with rank less than or equal to
r. It follows that

X(k+1) = Pr
(
X(k) − ηPΩ(X(k) −M)

)
, (3)

where η is the step size and Pr is the rank-r projection (for-
mally defined later in Definition 3). Due to the singular value
truncating nature of the projection Pr, PGD is often referred
as the iterative hard thresholding (IHT) method for matrix
completion [31]. In [22], IHT with step size η = n1n2/s is
also named as the Singular Value Projection (SVP) algorithm
for matrix completion. It is interesting to note that under
certain assumptions, [32] shows that the algorithm enjoys a
fast global linear convergence with this choice of step size.
Alternatively, setting the step size η = 1 yields the following
update

X(k+1) = Pr
(
X(k) − PΩ(X(k) −M)

)
= Pr

(
PΩ̄(X(k)) + PΩ(M)

)
. (4)

Note that PΩ̄(X(k))+PΩ(M) is a linear orthogonal projection
of X(k) onto the set of matrices with the same support
as M in Ω. This motivates the IHTSVD algorithm [26]
that alternates between two projection steps: the projection
onto the set of low-rank matrices and the projection onto
the set of matrices with the same support as M in Ω (see
Algorithm 1). This paper, developed based on [26], focuses
on local convergence properties of IHTSVD. Compared to the
existing global convergence analysis for matrix completion,
our setting does not require certain assumptions such as the

Algorithm 1: IHTSVD

Input: PΩ(M), r, K, X(0)

Output: X(K)

1: X(0) = PΩ(M)
2: for k = 0, 1, . . . ,K − 1 do
3: X(k+1/2) = Pr(X(k))
4: X(k+1) = PΩ̄

(
X(k+1/2)

)
+ PΩ(M)

incoherence of M , the uniform randomness of Ω, and the
low sample complexity, e.g., s = O(r5n log n) in [32]. We
also note that the proposed analysis can be extended to other
variants of IHT with different step sizes see Section III-C.

Finally, we present a formal definition of the rank-r projec-
tion. Consider a matrix X ∈ Rn1×n2 with the singular value
decomposition

X =

m∑
i=1

σi(X)ui(X)v>i (X),

where σ1(X) ≥ . . . ≥ σm(X) ≥ 0 are the singular values of
X and {u1(X), . . . ,um(X)}, {v1(X), . . . ,vm(X)} are the
sets of left and right singular vectors of X , respectively.

Definition 3. The rank-r projection of X is defined as

Pr(X) =

r∑
i=1

σi(X)ui(X)v>i (X).

The rank-r projection of X is unique if and only if σr(X) >
σr+1(X) or σr(X) = 0 [33]. Since Pr(X) zeroes out all the
small singular value of X , it is often referred as the singular
value hard-thresholding operator. Since M is a rank-r matrix,
we have

M = Pr(M) =

r∑
i=1

σiuiv
>
i = UrΣrV

>
r ,

where Σr = diag(σ1, . . . , σr) contains the singular values of
M and Ur = [u1, . . . ,ur] ∈ Rn1×r, Vr = [v1, . . . ,vr] ∈
Rn2×r are comprised of the first r left and right singular
vectors of M , respectively.2 Denote U⊥ = [ur+1, . . . ,un1 ] ∈
Rn1×(n1−r) and V⊥ = [vr+1, . . . ,vn2 ] ∈ Rn2×(n2−r). The
projections onto the left and right null spaces of M are
uniquely defined as PU⊥ = U⊥U

>
⊥ = In1

−
∑r
i=1 uiu

>
i and

PV⊥ = V⊥V
>
⊥ = In2

−
∑r
i=1 viv

>
i , respectively.

C. Related Work

This section discusses existing results in convergence anal-
ysis of IHT for matrix completion. As mentioned in Section I,
these results focus on guarantees for convergence to a global
solution of the problem, with a conservative bound on the
linear rate. To better understand their assumptions, we begin
by introducing a few key concepts and proceed to explain how
such key concepts are used in assuring global linear conver-
gence. First, the incoherence condition for matrix completion,
introduced by Candès and Recht [10], is stated as:

2In the rest of this paper, we omit the parameter in the notation of the
singular values and the singular vectors of M for simplicity.
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Assumption 1 (Incoherence). The matrix M = UrΣrV
>
r is

µ-incoherent, i.e.,

‖Ur‖2,∞ ≤
√
µr

n1
and ‖Vr‖2,∞ ≤

√
µr

n2
.

Intuitively, an incoherent matrix has well-spread singular vec-
tors and is less likely in the null space of the sampling operator.
A common setting that generates incoherent matrices is the
random orthogonal model:

Definition 4 (Random orthogonal model). The Haar measure
provides a uniform and translation-invariant distribution over
the group of orthogonal matrices O(n). M is said to follow
a random orthogonal model if Ur and Vr are sub-matrices of
Haar-distributed matrices in O(n1) and O(n2), respectively.

Second, to avoid adversarial patterns in the sampling set, it is
common to assume that each entry in Ω is selected randomly:

Assumption 2 (Uniform sampling). The sampling set Ω is
obtained by selecting s elements uniformly at random from
the Cartesian product [n1]× [n2].

We note that a similar but not equivalent assumption on the
sampling set is the Bernoulli model in which each entry
of M is observed independently with probability s/n1n2

[18]. Under these two standard assumptions, Candès and
Recht [10] showed that symmetric matrix completion of
size n can be solved exactly provided that the number of
observations is sufficiently large, i.e., s = O(n1.2r log n).
Later on, global convergence guarantees for various matrix-
completion algorithms have been actively developed, under
similar assumptions on the sample complexity. Examples of
these works include [16], [18], [19], [23]. It is noted that
linear convergence has been shown in the aforementioned
papers via a universal upper bound on the rate of convergence,
often in the form of an exponential decay bound on the error
through iterations. However, since such technique is generally
developed for proving global convergence, it does not offer
a tight bound on the convergence rate. Moreover, the matrix
completion setting considered in these papers is restricted to a
particular large-scale regime (n is very large) with the specific
sample complexity s ≈ O(nr log n).

In this paper, we address two questions that arise from
existing convergence analyses of IHT for matrix completion:
(i) can we estimate the linear convergence rate of IHT more
accurately? and (ii) are there other settings in which linear
convergence occurs? By exploiting the local structure of
the problem, we identify a deterministic condition on M
and Ω such that the linear convergence of IHTSVD can
be guaranteed. Compared to the aforementioned analyses on
the linear convergence of IHT, our result guarantees local
convergence rather than global convergence. However, our
estimate of the linear rate is exact and is tighter than the
existing global bounds in the literature. In addition, we do
not make assumptions on the incoherence of M and the
randomness of the sampling set Ω, as well as not require
a specific choice of sample complexity. As a result, our

analysis covers a larger set of matrix completion setting.3 Our
technique utilizes the recently developed error bound for the
first-order Taylor expansion of the rank-r projection, proposed
by Vu et. al. in [34]. The result is rephrased below.

Proposition 1 (Rephrased from [34]). For any ∆ ∈ Rn1×n2 ,
we have

Pr(M + ∆) = M + ∆− PU⊥∆PV⊥ + R(∆), (5)

where the residual R : Rn1×n2 → Rn1×n2 satisfies:

‖R(∆)‖F ≤
c1
σr
‖∆‖2F ,

for some universal constant 1 + 1/
√

2 ≤ c1 ≤ 4(1 +
√

2).

III. LOCAL CONVERGENCE OF IHTSVD

This section presents our analysis of the local convergence
of IHTSVD. First, we leverage the results in perturbation
analysis to identify the Taylor series expansion of the rank-
r projection. Next, the approximation allows us to derive the
nonlinear difference equation that describes the change in the
distance to the local optimum through IHT iterations. Closed-
form expressions of the asymptotic convergence rate and the
region of convergence are also given as a result of our analysis.

A. Main Result

Our local convergence result is stated as follows:

Theorem 1. Let {X(k)}∞k=0 be the sequence of matrices
generated by Algorithm 1, i.e.,

X(k+1) = PΩ̄

(
Pr(X(k))

)
+ PΩ(M), (6)

for all integer k. Assume that λmin(H) > 0 and X(0) satisfies∥∥∥X(0) −M
∥∥∥
F
<
λmin(H)

c1
σr, (7)

where H is an (n1n2 − s)× (n1n2 − s) matrix given by

H = S>Ω̄(PV⊥ ⊗ PU⊥)SΩ̄, (8)

and c1 is given in Proposition 1. Then, ‖X(k) − M‖F
converges asymptotically at a the local linear rate

ρ = 1− λmin(H). (9)

Specifically, for any ε > 0, ‖X(k)−M‖F ≤ ε‖X(0)−M‖F
for all integer k such that

k ≥ K(ε) =
log(1/ε)

log(1/(1− λmin(H)))
+ C, (10)

where τ = c1‖X(0)−M‖F
σrλmin(H) and

C =
1

ρ log(1/ρ)

(
E1

(
log

1

ρ+ τ(1− ρ)

)
− E1

(
log

1

ρ

)
+

1

2
log

(
log(1/ρ)

log
(
1/(ρ+ τ(1− ρ))

)))+ 1, (11)

3For an intuitive comparison of the matrix completion setting in our paper
versus the common setting in which s ≈ O(nr logn), we refer the readers
to the Supplementary Material - Fig. 1.
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with E1(t) =
∫∞
t

e−z

z dz being the exponential integral [35].

Theorem 1 provides a closed-form expression of the local
linear convergence rate of IHTSVD for matrix completion (see
Eqn. (9)). As can be seen in (10), the speed of convergence
depends strongly on how close the smallest eigenvalue of H
is to zero: as λmin(H) approaches 0, the number of iterations
needed to reach a relative accuracy of ε, i.e., K(ε), grows to
infinity. From (8), one can verify that all eigenvalues of H lie
between 0 and 1 since the norm of either a projection matrix
or a selection matrix is less than or equal to 1. This combined
with the aforementioned condition that λmin(H) > 0 ensures
the linear convergence rate ρ in (9) belongs to [0, 1).

Remark 1. Theorem 1 does not guarantee linear convergence
when λmin(H) = 0. Interestingly, one such situation is when
H is rank-deficient. Let us represent

H = S>Ω̄(V⊥ ⊗U⊥)(V⊥ ⊗U⊥)>SΩ̄

= WW>,

where W = S>
Ω̄

(V⊥⊗U⊥) ∈ R(n1n2−s)×(n1−r)(n2−r). If W
is a tall matrix, i.e.,

s < (n1 + n2 − r)r, (12)

then it follows that H is rank-deficient and λmin(H) = 0. We
note that in this case, the number of sampled entries is less
than the degrees of freedom of the problem.

Remark 2. When s ≥ (n1 + n2 − r)r, it is possible that
λmin(H) = 0 for certain (adversarial) sampling patterns. For
example, consider a 3× 2 rank-1 matrix

M =


1 0

0 0

0 0

 =


1

0

0

[1 0
]>
.

One choice of the matrices U⊥ and V⊥ is

U⊥ =


0 0

1 0

0 1

 and V⊥ =

0

1

 .
If we observe s = 4 entries of the first two rows of M ,
namely, (1, 1), (1, 2), (2, 1), and (2, 2), the selection matrix
corresponding to the unobserved entries (3, 1) and (3, 2) is
given by

S>Ω̄ =

0 0 1 0 0 0

0 0 0 0 0 1

 .
Then, we have

H = S>Ω̄(V⊥ ⊗U⊥)(V⊥ ⊗U⊥)>SΩ̄ =

0 0

0 1


and λmin(H) = 0. While Theorem 1 does not guarantee linear
convergence of IHTSVD, one may realize that it is impossible
to recover the last row of M in this case.

Existing convergence analyses of algorithms for low-rank
matrix completion often rely on standard assumptions, such as
the incoherence of the underlying matrix M and the uniform
randomness of the sampling pattern Ω [10]. Under these
assumptions and a sample complexity bound on the number of
observed entries s, linear convergence to a global solution can
be guaranteed (see [16] for alternating minimization and [23]
for IHT), with an upper bound on the rate of convergence
ρ < 0.5. Our analysis, on the other hand, does not use the
aforementioned assumptions but introduces a quantity that
is fundamental to the problem in terms of optimization. By
exploiting the local structure of the problem, we characterize
the exact linear rate of local convergence of IHT. Similar to
standard assumptions in prior works, the closed-form expres-
sion we obtained can be used to determine sufficient conditions
that ensure linear convergence. However, since our expression
is exact, one can identify conditions that are potentially less
stringent than existing conditions. For a more comprehensive
comparison between our work and prior rate analysis results,
we refer interested readers to the Supplementary Material -
Section I (Comparison to Prior Results).

B. Proof of Theorem 1

This section provides the proof of Theorem 1. We start by
formulating the recursion on the error matrix from the update
(6) and the linearization of the rank-r projection:

Lemma 1. Let us define the error matrix and its economy-
vectorized version, respectively, as

E(k) = X(k) −M and e(k) = S>Ω̄ vec(E(k)).

Then, we have

E(k+1) = PΩ̄

(
E(k) − PU⊥E

(k)PV⊥ + R(E(k))
)

(13)

and

e(k+1) =
(
I − S>Ω̄(PV⊥ ⊗ PU⊥)SΩ̄

)
e(k) + r

(
e(k)

)
, (14)

where R(·) is the residual defined in Proposition 1 and

r(e) = S>Ω̄ vec
(
R
(
vec−1(SΩ̄e)

))
for e ∈ Rn1n2−s.

Here we recall that vec−1(·) is the inverse vectorization
operator such that (vec−1 ◦ vec) is identity.

Equations (13)-(14) in Lemma 1 offer a recursion on the
error that expresses the k + 1-th error in terms of a linear
transformation of the kth error and a residual term whose
magnitude can be bounded and is asymptotically negligible.
Note that E(k) belongs to the set of matrices supported in Ω
and hence, ‖E(k)‖F = ‖e(k)‖2. From (14), using the triangle
inequality, the definition of the operator norm, and the fact
that the error lies in the set of matrices supported in Ω, i.e.,
PΩ(E(k)) = E(k), one can obtain the following bound on the
norm of the error matrix:

Lemma 2. The Frobenius norm of the error matrix satisfies∥∥∥E(k+1)
∥∥∥
F
≤
(
1− λmin(H)

) ∥∥∥E(k)
∥∥∥
F

+
c1
σr

∥∥∥E(k)
∥∥∥2

F
.

(15)
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The nonlinear difference equation (15) has been well-studied
in the stability theory of difference equations [36]–[38]. In fact,
our theorem follows directly on applying Theorem 1 in [38] to
(15), with a0 = ‖E(0)‖F , ρ = 1− λmin(H), and q = c1/σr.
The proofs of Lemmas 1 and 2 are given in Appendix A.

C. IHT with Step Sizes Different than 1

Recall from (3) that IHTSVD is a special case of IHT with a
unit step size. This choice of step size helps our analysis to be
simple and elegant. Thanks to the alternating-projection view
in (4), the error E(k) = X(k) −M is guaranteed to be in
the set of matrices supported in Ω, i.e., PΩ(E(k)) = E(k).
Hence, the error analysis reduces from the space Rn1×n2

for E(k) to the space Rn1n2−s for e(k) = S>
Ω̄

vec(E(k)).
For step sizes other than 1, this appeal no longer holds.
Nonetheless, one can follow a similar track to obtain an exact
rate analysis. Indeed, the linear convergence of IHT with a
fixed step size different than 1 has been recently studied in
[39]. In particular, Vu et. al. proved that for 0 < η < 2/‖K‖2,
where K = Q>⊥SΩS

>
ΩQ⊥ ∈ Rr(n1+n2−r)×r(n1+n2−r) and

Q⊥ ∈ Rn1n2×r(n1+n2−r) satisfies Q>⊥Q⊥ = Ir(n1+n2−r) and
Q⊥Q

>
⊥= In1n2

− PV⊥ ⊗ PU⊥ , the local linear convergence
rate of IHT with a fixed step size η is given by

ρη = max{|1− ηλmax(K)|, |1− ηλmin(K)|}. (16)

By comparing the two matrices K = Q>⊥SΩS
>
ΩQ⊥ ∈

Rr(n1+n2−r)×r(n1+n2−r) and H = S>
Ω̄

(PV⊥ ⊗ PU⊥)SΩ̄ ∈
R(n1n2−s)×(n1n2−s), we recognize that they share the same
set of eigenvalues in the interval [0, 1) while may only differ
by the eigenvalues at 1. Thus, substituting η = 1 into (16)
yields the same expression of the rate in (9).

It is also interesting to note that the optimal step size and
the optimal convergence rate are given by [39]

ηopt =
2

λmax(K) + λmin(K)
,

ρopt = 1− 2

κ(K) + 1
. (17)

Regardless of the step size, the approach with η = 1 and the
approach with other values for η are both based on no more
than the smallest and largest eigenvalues of the fundamental
matrix H . Thus, investigating the spectral properties of H
in the context of matrix completion plays a pivotal role in
understanding the linear convergence of IHT. In the rest of the
paper, we focus on the case with a unit step size for simplicity
and convenience. We will study the asymptotic behavior of
IHTSVD in the large-scale matrix completion setting (Sec-
tion IV) and provide further discussion on IHT with different
step sizes in Supplementary Material - Section II.

IV. LOCAL CONVERGENCE OF IHTSVD FOR
LARGE-SCALE MATRIX COMPLETION

In this section, we study the local convergence of IHTSVD
for large-scale matrix completion, a setting of practical interest
in the rise of big data. Using recent results in random matrix
theory, we show that, as its dimensions grow to infinity,
the spectral distribution of H converges almost surely to a

deterministic distribution with bounded support. Consequently,
we propose a large-scale asymptotic estimate of the linear
convergence rate of IHTSVD that is a closed-form expression
of the relative rank and the sampling rate.

A. Overview

We are interested in the asymptotic setting in which the size
of M grows to infinity, i.e., m = min{n1, n2} → ∞. Let us
assume that the ratio n1/n2 remains to be a non-zero constant
as m → ∞. In addition, we introduce two concepts that are
the normalization of the degrees of freedom and the number
of measurements:

Definition 5 (Relative rank). The rank r increases as m→∞
such that the relative rank remains to be a constant

ρr = 1−
√(

1− r

n1

)(
1− r

n2

)
∈ (0, 1]. (18)

Definition 6 (Sampling rate). The number of observations
increases as m → ∞ such that the sampling rate remains
to be a constant

ρs =
s

n1n2
∈ (0, 1]. (19)

When ρs < 1 − (1 − ρr)2, we recover the case in Remark 1
where the number of measurements is less than the degrees
of freedom. As far as the local linear rate of IHTSVD is
concerned, we only consider the case ρs ≥ 1− (1− ρr)2.

Remark 3. When r = m, we have ρr = 1. Moreover, when
n1 = n2 = m, the relative rank is exactly the ratio r/m. As
can be seen below, the proposed definition of the relative rank
incorporates both dimensions of M to enable the compact
representation of ρ in terms of ρr and ρs.

We are in position to state our result on the asymptotic
behavior of the linear rate ρ in large-scale matrix completion:

Theorem 2 (Informal). For ρs > 1 − (1 − ρr)2, the linear
convergence rate ρ of IHTSVD approaches

ρ∞ = 1−
(√

(1− ρr)2ρs −
√
ρr(2− ρr)(1− ρs)

)2

, (20)

as m→∞.

The formal statement of our result is given later in Theorem 3.
Note that ρ∞ is independent of the structure of the solution
matrix M and the sampling set Ω. Moreover, it depends only
on the relative rank and the sampling rate. Figure 1 depicts
the contour plot of ρ∞ as a function of ρr and ρs. It can be
seen that for a fixed value of ρr, the asymptotic rate decreases
towards 0 as the number of observed entries increases. This
matches the intuition that more information leads to faster
convergence. Conversely, for a fixed value of ρs, the algorithm
converges slower as the rank of the matrix increases, due to
the increasing uncertainty (i.e., more degrees of freedom) in
the set Ω̄. On the boundary where ρs = 1− (1−ρr)2, there is
no linear convergence predicted by our theory since ρ∞ = 1.
In this case, we recall that the number of observed entries
equals the degrees of freedom of the problem.
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Fig. 1: Contour plot of ρ∞ as a 2-D function of ρr and ρs given
by (20). The isoline at which ρ∞ = 1 is represented by the
dashed line. The yellow region below this isoline corresponds
to the under-determined setting ρs < 1− (1− ρr)2.

Our technique relies on recent results in random matrix
theory to exploit the special structure of H . First, when n1/n2

remains constant, it holds that n = n1n2 → ∞ as m → ∞.
Then, H can be viewed as an element of a sequence of
matrices of the form

Hn = W n
pq(W

n
pq)
>, (21)

where W n
pq ∈ Rpn1n2×qn1n2 is a truncation of the orthogonal

matrix W n = V n2 ⊗ Un1 , for Un1 and V n2

⊥ orthogonal
matrices of dimensions n1×n1 and n2×n2, respectively, and

p =
n1n2 − s
n1n2

= 1− ρs,

q =
(n1 − r)(n2 − r)

n1n2
= (1− ρr)2.

As n grows to infinity, we are interested in finding the limit
(or even the limiting distribution) of the smallest eigenvalue of
Hn, which is a random truncation of the Kronecker product
of two large dimensional semi-orthogonal matrices.

B. Truncations of Large Dimensional Orthogonal Matrices

Random matrix theory studies the asymptotic behavior of
eigenvalues of matrices with entries drawn randomly from
various matrix ensembles such as Gaussian orthogonal en-
semble (GOE), Wishart ensemble, MANOVA ensemble [41].
The closest random matrix ensemble to our matrix ensemble
{Hn}n∈N+ is the MANOVA ensemble in which truncations
of large dimensional Haar orthogonal matrices are considered.
Here we recall that the Haar measure provides a uniform
distribution over the set of all n×n orthogonal matrices O(n).
Indeed, it is a unique translation-invariant probability measure
on O(n). If we assume that the matrix M follows a random
orthogonal model [10], then U⊥ and V⊥ are essentially sub-
matrices of Haar orthogonal matrices in O(n1) and O(n2),
respectively, and {Hn}n∈N+ is a sequence of truncations of
the Kronecker product of two Haar orthogonal matrices.

There have been certain theoretical works on truncations
of Haar invariant matrices in the literature. In 1980, Wachter
[42] established the limiting distribution of the eigenvalues
in the MANOVA ensemble. Later on, the density function
of the eigenvalues of such matrix has been shown to be the
same as that of a Jacobi matrix [43]–[45]. Shortly afterward,
Johnstone proved the Tracy-Widom behavior of the largest
eigenvalue in [46]. More recently, Farrell and Nadakuditi
relaxed the constraint on the uniform (Haar) distribution of the
orthogonal matrix considered the Kronecker products of Haar-
distributed orthogonal matrices, which is similar to our matrix
completion setting in this paper. The authors showed that the
limiting density of their truncations remains the same as the
original case without Kronecker products. Further results on
the eigenvalue distribution of truncations of Haar orthogonal
matrices were also given in [47]–[49]. To the best of our
knowledge, no result has been shown for the limiting behavior
of the smallest eigenvalue of random MANOVA matrices.

In our context, we leverage the recent result in [40], which
assumes the randomness on the truncation rather than the
orthogonal matrix. This variant, while differs from the classic
MANOVA ensemble in random matrix theory, is well-suited
to the setting of matrix completion. Let us begin with the
following definition of the empirical spectral distribution:

Definition 7. Let Hn be an n×n real symmetric matrix with
eigenvalues λ1, . . . , λn. The empirical spectral distribution
(ESD) of Hn, denoted by µHn

, is the probability measure
that puts equal mass at each of the eigenvalues of Hn:

µHn
,

1

n

n∑
i=1

δλi ,

where δλ is the Dirac mass at λ.

Next, we define the concepts of a sequence of row sub-sampled
matrices and the concentration property:

Definition 8. For each n ∈ N+, consider the n × qn matrix
W n

q = [wn
1 , . . . ,w

n
n]>, where wn

i ∈ Rqn and q is a constant
in (0, 1). Let Pn be a pn-permutation of [n] selected uniformly
at random, for p is a constant in (0, 1), and W n

pq ∈ Rpn×qn
be the random matrix obtained by selecting the corresponding
set of pn rows from W n

q . Then, the sequence {W n
q }n∈N+

is called a sequence of q-tall matrices, and the sequence
{W n

pq}n∈N+ is called a sequence of row sub-sampled matri-
ces of {W n

q }n∈N+ .

Definition 9. Given the setting in Definition 8, for each j ∈
Pn, denote P jn = Pn \ {j}. In addition, for z ∈ C, define

Rj(z) =
(∑
i∈P j

n

wn
i (wn

i )>− zIqn
)−1

.

Then, the sequence {W n
q }n∈N+ is concentrated if and only if

for any j ∈ Pn and z ∈ C, we have

(wn
j )>Rj(z)w

n
j − Ej|P j

n

[
(wn

j )>Rj(z)w
n
j

] p→ 0. (22)

In the following, we consider examples of sequences of
matrices that are concentrated, as well as an example of the
sequence of incoherent matrices that are not concentrated.
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Fig. 2: (Motivated by Fig. 2 in [40]) Scaled histogram and the limiting ESD of Hn = W n
pq(W

n
pq)
>, where W n

pq is the pn×qn
upper-left corner of an n × n orthogonal matrix Wn, for n = 10000, p = 0.16, and q = 0.36. In (a), Wn is the orthogonal
factor in the QR factorization of a 10000× 10000 random matrix with i.i.d standard normal entries. In (b), Wn = Q1 ⊗Q2,
where Q1 and Q2 are the orthogonal factors in the QR factorization of two independent 100 × 100 random matrices with
i.i.d standard normal entries. The histograms with 50 bins (blue) are scaled by a factor of 1/pnw, where w is the bin width.
The limiting ESD (red) is generated by (23). It can be seen that the histogram in (a) match the limiting ESD better than the
histogram in (b).

Example 1. Random settings:4

1) The sequence of q-tall matrices {An
q }n∈N+ , where the

entries of An
q are i.i.d N (0, 1/n), is concentrated.

2) The sequence {Bn
q ⊗Cn

q }n∈N+ , where {Bn
q }n∈N+ and

{Cn
q }n∈N+ are two sequences of q-tall matrices whose

entries are i.i.d N (0, 1/n), is also concentrated.

Example 2. Deterministic settings:
1) The sequence of q-tall matrices {Dn

q }n∈N+ , where the
entries of Dn

q are all 1, is concentrated.
2) The sequence of 1/2-tall matrices {En

q }n∈N+ where

En
q =

0.6
√

2
nHn/2

0.8
√

2
nHn/2

 ,
for Hn/2 being a Hadamard matrix of order n/2 [50],
is not concentrated. On the other hand, one can verify
that En

q is µ-incoherent, for

µ =
∥∥∥0.8

√
2/nHn/2

∥∥∥2

F

n

n/2
= 1.28.

Thus, the concentration assumption in Definition 9 is
stronger than the widely-used incoherence assumption.

With these definitions in place, we now state the result of
the limiting ESD of truncation of orthogonal matrices. To fit
our matrix completion setting in this paper, we rephrase the
result in [40] to the case of row sub-sampled semi-orthogonal
matrices (as opposed to column sub-sampled semi-orthogonal
matrices in the aforementioned paper).

4The detail of this example is provided in the Supplementary Material -
Section III.

Proposition 2 (Rephrased from [40]). Let {W n
q }n∈N+ be a

sequence of q-tall matrices that is concentrated. In addition,
assume that W n

q is semi-orthogonal for all n ∈ N+, i.e.,
(W n

q )>W n
q = Iqn. Let {W n

pq}n∈N+ be a sequence of row
sub-sampled matrices of {W n

q }n∈N+ . Then, as n → ∞, the
ESD of Hn = W n

pq(W
n
pq)
> converges almost surely to the

deterministic distribution µpq such that

dµpq =
(

1− q

p

)
+
δ(x)dx+

(p+ q − 1

p

)
+
δ(x− 1)dx

+

√
(λ+ − x)(x− λ−)

2πpx(1− x)
I[λ− ≤ x ≤ λ+]dx, (23)

where δ is the Dirac delta function and

λ± =
(√

q(1− p)±
√
p(1− q)

)2
.

The proposition asserts that the limiting ESD of Hn exists
and depends only on the row ratio p and the column ratio
q, provided that {W n

q }n∈N+ is concentrated. We note that the
distribution µpq is exactly the same as the limiting distribution
of the MANOVA ensemble. Indeed, one can show that the
MANOVA ensemble is a concentrated matrix sequence:

Lemma 3. Let W n be a Haar-distributed orthogonal matrix
in O(n) and W n

q be the semi-orthogonal matrices obtained
from any qn (for q ∈ (0, 1)) columns of W n. Then the
sequence {W n

q }n∈N+ is concentrated.

Furthermore, the Kronecker product of two Haar-distributed
orthogonal matrices also possesses the concentration property:

Lemma 4. Let Un1 and V n2 be Haar-distributed orthogonal
matrices in O(n1) and O(n2), respectively. Define Un1

q1 and
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V n2
q2 as the semi-orthogonal matrices obtained from any q1

and q2 (for q1, q2 ∈ (0, 1)) columns of Un1 and V n2 ,
respectively. Then the sequence {W n

q = Un1
q1 ⊗ V n2

q2 }n∈N+

(with q = q1q2) is concentrated.

Lemmas 3 and 4 are immediate consequences of Lemma 3.1
in [51], so we omit the proof of these lemmas here.

C. Proposed Estimation of the Linear Rate ρ

In order to apply Proposition 2 to our matrix completion
setting, we recall that W n

pq can be viewed as the n-th element
of a sequence of row sub-sampled matrices of {W n

q }n∈N+ ,
where W n

q = V n2

⊥ ⊗ Un1

⊥ . If the sequence {W n
q }n∈N+ is

concentrated, then (23) holds for p = 1−ρs and q = (1−ρr)2.
Therefore, one might expect that the smallest eigenvalue of
Hn = W n

pq(W
n
pq)
> converges to

λ− =
(√

q(1− p)−
√
p(1− q)

)2
.

Thus, by Theorem 1, the convergence rate ρ converges to 1−
λ−. The following theorem is an immediate application of
Proposition 2 to our large-scale matrix completion setting:

Theorem 3. As m → ∞, assume that M is generated in a
way that the Kronecker product W n

q = V n2

⊥ ⊗ Un1

⊥ forms
a sequence of semi-orthogonal matrices that is concentrated.
Then, provided ρs ≥ 1 − (1 − ρr)2, the ESD µHn

converges
almost surely to the deterministic distribution µρrρs such that

dµρrρs =
( (1− ρr)2 − ρs

1− ρs

)
+
δ(x− 1)dx

+

√
(λ+ − x)(x− λ−)

2π(1− ρs)x(1− x)
I[λ− ≤ x ≤ λ+]dx, (24)

where λ± =
(√

(1− ρr)2ρs ±
√
ρr(2− ρr)(1− ρs)

)2

.

Theorem 3 states the convergence of the spectral distribution
of H as the dimensions grow to infinity. It is notable that the
support of the distribution consists of the interval [λ−, λ+]
and a mass at 1. Based on this result, we conjecture that the
smallest eigenvalue of H converges to λ− and hence, the
convergence rate ρ converges to ρ∞:

Conjecture 1. Assume the same setting as in Theorem 3. As
m → ∞, the linear rate ρ defined in (9) converges almost
surely to p∞ = 1− λ−, given in (20).

V. NUMERICAL RESULTS

In this section, we provide numerical results to verify
the exact linear convergence rate of IHTSVD in (9) with
the empirical rate observed in monitoring the error through
iterations. Additionally, as supporting evidence for Theorem 3
and Conjecture 1, we demonstrate the increasing similarity
between the empirical rate and the asymptotic rate in (20) as
the dimensions of the matrix grow.

0 2000 4000 6000 8000 10000
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Fig. 3: Estimation of the empirical rate using the error se-
quence {

∥∥X(k) −M
∥∥
F
}k2k=k1

. Due to the numerical error
below 10−12, we need to identify the ‘turning point’ at k0

and then set k1 = b0.4k0c and k2 = b0.9k0c.

A. Analytical Rate versus Empirical Rate

In this experiment, we verify the analytical expression of
the linear convergence rate of IHTSVD by comparing it with
the empirical rate obtained by measuring the decrease in the
norm of the error matrix. Our goal is to demonstrate that they
agree in various settings of ρr and ρs.

Data generation. We first set the dimensions n1 = 50 and
n2 = 40. Next, for each r in {1, 2, . . . , 12}, we generate
the rank-r matrix M as follows. We construct the random
orthogonal matrices U and V by (i) generating a n1 × n2

random matrix whose entries are i.i.d normally distributed
N (0, 1) and (ii) performing the singular value decomposition
of the resulting matrix. The matrices U and V are comprised
of the corresponding left and right singular vectors. Then, the
rank-r matrix M is generated by taking the product U1Σ1V

>
1 ,

where Σ1 = diag(r, r − 1, . . . , 1) and U1,V1 are the first r
columns of U and V , respectively. Finally, for each s in the
linearly spaced set {0.2n, 0.23n, 0.26n, . . . , 0.8n}, we create
the 1000 different sampling sets, each of them is obtained
by generating a random permutation of the set [n] and then
selecting the first s elements of the permutation. Thus, we
obtain a 12 × 21 grid based on the values of r and s such
that (i) grid points corresponding to the same rank r share the
same underlying matrix M ; and (ii) each point on the grid
corresponds to 1000 different sampling sets.

Estimating Analytical Rate and Empirical Rate. We cal-
culate the analytical rate for each aforementioned setting of
M and Ω using (9). Due to numerical errors in computing
small eigenvalues, we need to set all the resulting rates that
are greater than 1 to 1, indicating there is no linear convergence
in such cases. For the calculation of the empirical rate, we run
Algorithm 1 in the same setting with K = 10000 iterations.
The initial point X(0) is obtained by adding i.i.d. normally
distributed noise with standard deviation σ = 10−4 to the
entries of M . Here we note that σ is chosen to be small for
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Fig. 4: The analytical rate and the empirical rate of convergence of IHTSVD as a function of the relative rank ρr and the
sampling ratio ρs, with n1 = 50 and n2 = 40. (a) Contour plot of the analytical rate as a function of ρr and ρs. (b) Contour
plot of the empirical rate as a function of ρr and ρs. (c) Empirical probability of linear convergence based on the analytical
rate. (d) Empirical probability of linear convergence based on the empirical rate. In (c) and (d), the black color corresponds to
linear convergence, whereas the white color corresponds to no linear convergence. The data is evaluated based on a 12× 21
grid over ρr and ρs and the value of each point in the grid is averaged over 1000 runs. Additionally, a dashed line is included
in each plot to indicate the line 1− ρs = (1− ρr)2. The similarity between the left column and the right column demonstrates
the utility of the empirical rate in estimating/approximating the analytical rate.

two reasons: (i) for large matrices, even small σ for individual
entry can add up to a large error on the entire matrix; and
(ii) while the cost of computing λmin (and hence, the region
of convergence) is prohibitively expensive for large matrices,
choosing small σ empirically guarantees the initialization is
inside the region of convergence.

Next, we record the error sequence {‖X(k) −M‖F }Kk=1

and determine if the algorithm converges linearly to M by
checking whether there exists K̂ ≤ K such that ‖X(K̂) −
M‖F < ε‖X(0) −M‖F , for ε = 10−8. If the relative error
is above ε, we set the empirical rate to 1 to indicate that the
algorithm does not converge linearly. However, it is important
to note that this heuristic does not perfectly detect linear
convergence since it overlooks the case in which the linear rate
is extremely close to 1 and it requires more than K = 10000
iterations to reach a relative error below ε. As can be seen later,

to compromise this computational limit, we resort to setting
the analytical rate that is greater than 0.998 to 1 when making
a comparison between the analytical rate and the empirical
rate.5 In case the relative error is less than ε, we terminate
the algorithm at the K̂-th iteration (early stop) and perform a
simple fitting for an exponential decrease on the error sequence
{‖X(k) −M‖F }K̂k=1 to obtain the empirical rate.

After obtaining the analytical rate and the empirical rate
over the 2-D grid, we report the result in the contour plots of
the rate as a function of ρr and ρs in Fig. 4(a) and Fig. 4(b).
Since our original grid is non-uniform, we perform a scattered
data interpolation, which uses a Delaunay triangulation of
the scattered sample points to perform interpolation [52], to

5Substituting ε = 10−8 and K(ε) = 10000 into (10) and assuming the
constant c is negligible, we obtain λmin(H) ≈ 1.8 × 10−3, which in turn
implies ρ = 1− λmin(H) = 0.998.
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evaluate the rate over a 1001 × 1001 uniform grid based on
ρr and ρs. Due to the aforementioned limitation of estimating
the empirical rate, we apply a threshold of 0.998 to both the
interpolated data for the analytical rate and the empirical rate,
setting any value above the threshold to 1.

Finally, at each point of the 12 × 21 grid, we calculate
the probability of linear convergence over 1000 runs. For
the analytical rate, the linear convergence is determined by
checking whether λmin(H) < 1. For the empirical rate, we
use the aforementioned discussion on determining whether the
algorithm converges linearly with K = 10000 and ε = 10−8.
The results are visualized in Fig. 4(c) and Fig. 4(d).

Results. Given the values of the analytical rate and the empir-
ical rate of 1000 matrix completion settings for each point on
the 12×21 grid, the mean squared difference between the two
rates in our experiment is 2.9659× 10−5. Figure 4 illustrates
the similarity between the analytical rate and the empirical
rate evaluated under various settings of matrix completion. In
both Fig. 4(a) and Fig. 4(b), we observed a matching behavior
as in Fig. 1: smaller rank and more observation result in
faster linear convergence of IHTSVD. However, the contour
lines in Fig. 4 are not as smooth as those with asymptotic
behavior in Fig. 1 due to the resolution of the grid as well
as the large variance of the convergence rate under different
sampling patterns when n1 and n2 are relatively small. On the
other hand, it can be seen from Fig. 4(c) and Fig. 4(d) that
there is a linear-convergence area (black) above the boundary
line at 1 − ρs = (1 − ρr)2 and a no-linear-convergence area
(white) below the boundary line. The transition area (gray)
near the boundary line corresponds to the settings in which
some sampling sets yield λmin(H) = 0 while some other
sampling sets yield λmin(H) > 0. We discuss this transition
region further in the next experiment.

To conclude, note that in order to obtain the analyti-
cal rate, we need to compute the smallest eigenvalue of a
(n− s)× (n− s) matrix, which is computationally expensive
for large n = n1n2. In particular, when s = O(n), the cost of
computing the analytical rate is O(n3). On the other hand, the
empirical rate offers an alternative but more efficient way to
estimate the convergence rate via running Algorithm 1 whose
computational complexity per iteration is O(nr). As a by-
product, our proposed empirical rate can be used to efficiently
estimate the smallest eigenvalue of the large matrix H .

B. Non-asymptotic Rate versus Asymptotic Rate

In this experiment, we compare the asymptotic rate given
in Theorem 3 with the convergence rate of IHTSVD for large-
scale matrix completion. For convenience, we refer to the
latter as the non-asymptotic rate. As mentioned, we use the
empirical rate instead of the analytical rate to estimate the
non-asymptotic rate due to the computational efficiency.

Data generation. We consider two settings of (n1, n2), i.e.,
n1 = 500, n2 = 400 and n1 = 1200, n2 = 1000. Similar
to the previous experiment, we generate M and Ω based
on a 2-D grid over r and s. While the values of s are
still selected from the set {0.2n, 0.23n, 0.26n, . . . , 0.8n}, the

values of r are chosen differently for each setting of (n1, n2).
In particular, for n1 = 500, n2 = 400, we select the values
of r from the linearly spaced set {1, 4, 7, . . . , 118}. For
n1 = 1200, n2 = 1000, we select the values of r from the
linearly spaced set {1, 9, 17, . . . , 297}. Thus, in the former
setting, the grid size is 40× 21, while in the latter setting, the
grid size is 38× 21. We note that both grids are non-uniform
in terms of ρr and ρs.

Implementation. The calculations of the empirical rate and
the probability of linear convergence are the same as in the
previous experiment. For computational efficiency, we omit the
points on the grid that are below the boundary line 1− ρs =
(1 − ρr)2, i.e., s < (n1 + n2 − r)r, since it is evident that
there is no linear convergence guaranteed at these points. No
analytical rate is given in this experiment because calculating
the smallest eigenvalue of a (n1n2−s)× (n1n2−s) matrix is
computationally expensive for large n1 and n2. On the other
hand, the contour plot of the asymptotic rate is straightforward
to obtain using (20).

Results. In Fig. 5(a) and Fig. 5(b), we present the average
empirical rate of linear convergence of IHTSVD as a function
of the relative rank and the sampling rate in two large-scale
settings. Observing the average empirical rate from Fig. 4(b) to
Fig. 5(a) and to Fig. 5(b) as the dimensions increase, we note
a shift of the contour lines towards the bottom-right corner,
approaching those of the asymptotic rate in Fig. 5(c). This
matches our intuition from Theorem 3 that as the dimensions
grow to infinity, the linear rate of IHTSVD converges to the
asymptotic rate p∞. Additionally, from Fig. 4(d), Fig. 5(d),
and Fig. 5(e), we observe that the linear-convergence area
(black) becomes larger in larger matrix completion settings,
indicating the isoline at 0.998 approaches closer to the line
1 − ρs = (1 − ρr)

2 (dashed line). It is notable, however,
that the transition between the linear-convergence area and the
no-linear-convergence area is more abrupt as the dimensions
increase. This phenomenon also matches our intuition in
Conjecture 1, indicating that there is smaller variance in the
empirical rate in large-scale settings, with respect to different
random sampling patterns on the same underlying matrix.7

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we established a closed-form expression of the
local linear convergence rate of an iterative hard thresholding
method for solving matrix completion. We also identified the
local region around the solution that guarantees the conver-
gence of the algorithm. Our result holds for a wide range
of matrix completion settings that do not necessarily require
the assumptions on the incoherence of the underlying matrix
and the specific choice of sample complexity. Furthermore,
in large-scale settings, we leveraged the result from random
matrix theory to offer a simple estimation of the asymptotic
convergence rate in practice. Under certain assumptions, we

6In (d) and (e), the black color corresponds to linear convergence, whereas
the white color corresponds to no linear convergence.

7Another evidence supporting this argument is the comparison of the
coefficient of variation of the empirical rate in Fig. 5(a) and Fig. 5(b). We
provide the detail in Fig. 3 in the Supplementary Material.
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(a) n1 = 500, n2 = 400 (b) n1 = 1200, n2 = 1000 (c) p∞ (zoom in)
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(e) n1 = 1200, n2 = 1000 (f) p∞ (zoom out)

Fig. 5: The empirical rate and the asymptotic rate of convergence of IHTSVD as a function of the relative rank ρr and the
sampling ratio ρs. (a) Contour plot of the empirical rate as a function of ρr and ρs for n1 = 500, n2 = 400. (b) Contour plot
of the empirical rate as a function of ρr and ρs for n1 = 1200, n2 = 1000. (c) A zoom-in contour plot of the asymptotic rate
as a function of ρr and ρs. (d) Empirical probability of linear convergence based on the empirical rate in (a). (e) Empirical
probability of linear convergence based on the empirical rate in (b).6 (f) A zoomed-out contour plot of the asymptotic rate as
a function of ρr and ρs. The red solid rectangular corresponds to the zoomed-in region in (c). The data is evaluated based on
2-D grids over ρr and ρs and the value of each point in each grid is averaged over 100 runs. Additionally, a dashed line is
included in each plot to indicate the line 1− ρs = (1− ρr)2. The striking similarity between plots (b) and (c) illustrates the
utility of our convergence rate analysis in large-scale settings.

showed that the convergence rate of IHTSVD converges
almost surely to our proposed estimate.

In future work, we would like to extend our local conver-
gence analysis to other IHT methods such as accelerated IHT
[27], [28]. In addition, it would also be interesting to study
the non-asymptotic behavior of the convergence rate in large-
scale settings. Finally, we believe the technique presented in
this manuscript can be applied to study the local convergence
of other non-convex methods such as alternating minimization
[16] and gradient descent [18].

APPENDIX
PROOF OF THEOREM 1

A. Proof of Lemma 1

By the definition of the error matrix, we have

E(k+1) = X(k+1) −M

=
(
PΩ̄

(
Pr(X(k))

)
+ PΩ(M)

)
−
(
PΩ(M) + PΩ̄(M)

)
= PΩ̄

(
Pr(M + E(k))−M

)
. (25)

From Proposition 1, we can reorganize (5) to obtain

Pr(M + E(k))−M = E(k) − PU⊥E
(k)PV⊥ + R(E(k)).

Substituting the last equation back into (25) yields the recur-
sion on the error matrix as in (13).

Next, let us denote e(k) = S>
Ω̄

vec(E(k)), for k = 1, 2, . . ..
Vectorizing equation (13) and left-multiplying both sides with
SΩ̄ yield

e(k+1) = S>Ω̄ vec
(
PΩ̄

(
E(k) − PU⊥E

(k)PV⊥ + R(E(k))
))
.

Using the property of selection matrices in Definition 2, we
further have

e(k+1) = S>Ω̄SΩ̄S
>
Ω̄ vec

(
E(k) − PU⊥E

(k)PV⊥ + R(E(k))
)

= S>Ω̄ vec
(
E(k) − PU⊥E

(k)PV⊥ + R(E(k))
)
.

Since vec(PU⊥E
(k)PV⊥) = (PV⊥⊗PU⊥) vec(E(k)), the last

equation can be represented as

e(k+1) = S>Ω̄ vec(E(k))− S>Ω̄(PV⊥ ⊗ PU⊥) vec(E(k))

+ S>Ω̄ vec
(
R(E(k))

)
. (26)

On the other hand, (13) implies, for any k ≥ 1, E(k) =
PΩ̄(E(k)) and

vec(E(k)) = vec
(
PΩ̄(E(k))

)
= SΩ̄S

>
Ω̄ vec(E(k)) = SΩ̄e

(k).

Substituting the last equation into the RHS of (26) yields (14).
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B. Proof of Lemma 2

Applying the triangle inequality to the RHS of (14) yields∥∥∥e(k+1)
∥∥∥

2
≤
∥∥∥(I −H)e(k)

∥∥∥
2

+
∥∥∥r(e(k))

∥∥∥
2
, (27)

where we recall H = S>
Ω̄

(PV⊥ ⊗PU⊥)SΩ̄. By the definition
of the operator norm, we have∥∥∥(I −H)e(k)

∥∥∥
2
≤ ‖I −H‖2

∥∥∥e(k)
∥∥∥

2

= max
i

{
|1− λi(H)|

}
·
∥∥∥e(k)

∥∥∥
2

=
(
1− λmin(H)

) ∥∥∥e(k)
∥∥∥

2
, (28)

where the last equality stems from the fact that all eigenvalues
of H lie between 0 and 1. From (27) and (28), we obtain∥∥∥e(k+1)

∥∥∥
2
≤
(
1− λmin(H)

) ∥∥∥e(k)
∥∥∥

2
+
∥∥∥r(e(k))

∥∥∥
2
. (29)

The conclusion of lemma follows from the fact that∥∥∥e(k)
∥∥∥

2
=
∥∥∥PΩ̄

(
E(k)

)∥∥∥
F

=
∥∥∥E(k)

∥∥∥
F

and ∥∥∥r(e(k))
∥∥∥

2
≤
∥∥∥R(E(k))

∥∥∥
F
≤ c1
σr

∥∥∥E(k)
∥∥∥2

F
.
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